Visually-guided Object Manipulation by a Mobile Robot

L. Pinero R. Cintas

Escuela Politécnica

L. J. Manso

Escuela Politécnica Escuela Politécnica

P. Bachiller

Escuela Politécnica

P. Bustos

Escuela Politécnica

Univ. de Extremadura Univ. de Extremadura Univ. de Extremadura Univ. de Extremadura Univ. de Extremadura

luispineror@gmail.com rcintas@gmail.com

Abstract

For mobile robots, the problem of interaction with
simple objects in a semi-controlled environment is
arich source of challenging situations. In this paper
we present a real experiment dealing with the de-
sign of a sequential task and its implications in the
active nature of the perceptual process involved. In
order to set up this experiment, it is required a non
trivial set of functioning senso-motor behaviours.
We build on this set to design and test a pallet
picking task in which the robot has to locate, ap-
proach, obtain the pose and, finally, pick up the
target. The only sensorial information available to
the robot is its binocular vision system and its in-
ternal odometry. To carry out this task we have
equipped a RobEx robot with a 1 dof forklift and
a4 dof’s binocular head. We present the conceptual
and computational models and the results of the ini-
tial experiments in a real setup.

1 Introduction

Designing computational structures that can repre-
sent and be used in the execution of complex se-
quential plans involving manipulation is an impor-
tant problem in the field of mobile robotics[10].
Current state of research in this area is moving
from the initial mapping and navigation skills to-
wards smarter plan execution capabilities. How-
ever, building up new skills on top of previous
ones is not an easy task. New algorithms of a
very different nature (plan executives) have to co-
exist with well known, but not yet fully under-
stood, solutions to supporting abilities such as cal-
ibration, local navigation, localization, mapping or
object recognition. When dealing with real robots

Imanso @unex.es

pilarb@unex.es pbustos @unex.es

and real software, new complexities arise derived
from sensor noise and from the ever increasing
number of lines of code, running on always lim-
ited computational resources. Furthermore, teams
of many developers and the need for code reuse
settle even more demanding requirements on fea-
sible solutions. A promising approach is to use
component-oriented specialized middlewares[2, 7]
that provides a means of dividing, reusing and orga-
nizing large amounts of sophisticated and changing
code, typical of robotic research environments.

In this work we use RoboComp [4, 1, 8] and
the RobEx robot[5]. RoboComp is a component-
oriented robotics framework. It is based on Ice, a
industrial grade communications middleware from
ZeroC. RoboComp provides several useful features
such as: a) a component model; b) an automatic
release installer; ¢) a flexible directory structure;
d) several utility scripts for creating and modify-
ing components;) a graphical component manager
for static configuration of component networks and
dynamic monitoring of their behaviour; f) seamless
connection to the open source Gazebo simulator;
g) logging facilities; h) recording and playback of
component data structures for off line development
and program debugging; i) rapid Python-based pro-
totype development scripting.

Building on this infrastructure, we can more eas-
ily focus on the problem of designing sequential
tasks involving active visual searching, detection,
recognition, pose estimation, manoeuvring, picking
and delivering. As a simple but realistic example
of these sort of tasks, we have selected the problem
of manipulating a pallet by a robot equiped with a
1 dof frontal forklift. All sensor information it can
use comes from its 4 dof stereo head and the base in-
ternal odometry. The most interesting aspect of this

experiment, and the result we want to stress here,
is that each transition that takes the robot closer
to the target is designed to also reduce the uncer-
tainty in the robot-pallet spatial relation. We thus
interleave actions to reach the goal with actions to
perceive the target, building specific representations
in each stage. When the task begins and the robot
is searching for something that resembles a pallet,
many remote objects can satisfy the initial detection
criteria. The inner representations built to maintain
these initial hypothesis are simple and undetailed.
But as the robot proceeds toward the target, more
complex representations are used and more compu-
tation time is spent in refining these representations.
During the approaching stage the robot keeps itself
focused on the target, by performing attentional eye
movements. So, the closer the robot is, the bigger
the confidence on the target being a pallet and on its
size and orientation.

2 Sequential task design

Robust pallet manipulation by mobile robots using
only odometric and visual information requires a
careful design of a sequence of states and transi-
tions, so the robots can recover safely from percep-
tual and action misreadings or incorrect model hy-
pothesis, back to the main plan[9]. In this work we
decompose this task in the following generic sub-
tasks:

1. Gather context information
. Search for a target object candidate

. Approach to gain a favourable point of view

A WD

. Recognize or reject the candidate as the target
object and estimate initial orientation

5. Refine object pose estimation by minimizing
reprojection error of a synthetic parametrized
internal 3D model

6. Approach and pick the target object
7. Start final destination approach procedure

Note that this sequence of tasks is quite generic
and can be applied to a wide variety of robot and
context configurations. Each of these subtaks rep-
resents an intermediate state towards reaching the

final goal. To do so, each state is implemented with
algorithms that solve the specific problems locally
and/or through remote calls to other components.
The possibility of doing remote procedure calls to
other components is what gives behaviour alloca-
tion its real meaning. Also and no less importantly,
there are different failure conditions, local and re-
mote, that can occur during the execution of each
subtask. These error conditions have to be managed
by transitions to former states or to halt exception
states. They are not denoted in the former list of
subtasks but appear in the graph shown in figure 2.

A standard approach to this problem is the for-
malism of state machines (e.g. as developed by
Harel[3]). Statecharts provide a graphical means of
modelling how a system reacts to stimuli. This is
achieved by defining the possible states of the sys-
tem, and how the system can switch from one state
to another (transitions between states). A key char-
acteristic of event-driven systems is that behaviour
often depends not only on the last or current event,
but also the events that preceded it. With state-
charts, this information is easy to express. Qt Soft-
ware has recently released a state machine frame-
work based on Harel’s StateCharts[6]. This frame-
work provides an API and execution model that
can be used to effectively embed the elements and
semantics of statecharts in Qt applications. This
tool provides us with concurrent and hierarchical
structures that can be used as executive engines
for robust plan execution. When combined with
a component-oriented architecture, the concurrent
dimension of the state machines can be easily ex-
tended to a fast growing network of these machines,
keeping a reasonable bound in the complexity that
needs to be managed by developers and researchers.
We use this framework embedded in RoboComp
in these experiments and will show corresponding
state diagrams modelling the visual handling task
described before. In this section we describe the
state machine used in the experiment and the re-
strictions imposed to the environment inhabited by
the robot. The goal of this experiment is to anal-
yse the use of a state machine framework inside
our component-based robotics middleware, Robo-
Comp, in order to run a complex sequential be-
haviour allocation task. To show the complete ar-
chitecture of the system we need to describe it in
two levels. The first one is shown in the next sec-

tion and contains the specific configuration of com-
ponents that drives the robot. The second one is
described afterwards and shows the state machine
designed for the experiment.

3 Basic Components

Each component in the graph contributes with a
function to the whole system. Some of them are
called behaviours when they are goal oriented, such
as Tracking, Vergence or Trajectory. A list of the
components and a brief description of its function
are detailed below.

File Simulation

List view | Graph view

Figure 1: Component graph

e DifferentialRobot: Provides a functional API
to control a differential mobile robot and main-
tains a probabilistic odometric state that can be
zeroed at any time. It can also run in a energy
saving mode deactivating the power amplifiers
if no command is received within a given pe-
riod of time. It currently supports drivers for a
custom made microcontroller based PID con-
troller, for the open source Gazebo simulator
and Player hardware abstraction layer.

JointMotorArray: An array of servomotors
sharing a communication bus. The component
provides configuration parameters for the bus
and for each motor, and an API to command
the servos individually or synchronously. New
bus drivers can be added by subclassing an ab-
stract "Handler" class.

Fork: Provides basic functional access to the
RobEx forklift manipulator.

JoyStick: Provides an API for a generic Linux
joystick used to control a differential mobile
robot.

HeadNT2P: Models a stereo head with four
degrees of freedom: neck (common pan) and
common tilt movement affecting both cam-
eras, and two separate camera-specific pan
movements. Its API offers commands to trig-
ger coordinate saccadic and smooth pursuit
movements.

CameraArray: An array of cameras sharing a
common communication bus. Provides con-
figuration parameters for the bus and for each
motor, and an API to access each camera
individually or synchronously. New camera
drivers can be added by subclassing and ab-
stract "Camera" class. Currently, the compo-
nent supports Firewire, V4L2, Gazebo and the
specific sdk’s of Prosilica and Point Grey cam-
eras.

Vision: Computes regions of interest as local
extrema in Harris-Laplace pyramid. The list of
regions can be recovered along with the pyra-
mid. If a suitable GPU is available, the com-
ponent can compute Sift descriptors at video
rate on the detected regions using SiftGPU

Roimant: This component stabilizes the roi’s
computed by Vision. It maintains in memory
a local updated copy of the regions visible in
the world around de robot. In stereo configura-
tions it computes the 3D coordinates of regions
using a standard correlation measure and the
epipolar geometry as reported by HeadNT2P.

Tracker: Controls the dominant camera to pro-
vide a tracking behavior on a certain roi or ini-
tial angular coordinates. It can apply correla-

tion over the whole pyramid to recover from
failure situations.

e Vergence: Controls the non-dominant camera
so its principal ray converges with the domi-
nant camera’s principal ray at the currently at-
tended 3D point. It uses the whole pyramid
to avoid local minima when finding the best
matching angular position. Correct vergence
maximizes the shared field of view in a stereo
configuration.

e RobotTrajectory: Computes and follows local
trajectories using odometric information. It
can compute Bézier curves to fit initial and fi-
nal orientation conditions for the robot.

e Forklift: This components holds the main state
machine that sequences the behaviours in this
experiment.

e Vdescriptor: Computes texture descriptors on
the regions of interest maintained by Roimant.
It can be activated on demand due to the
heavy computations involved. Currently im-
plemented descriptors are: Rift, Spin y Sift[1].

4 A State Machine for Pallet Manipula-
tion

The second level is the specific state machine used
in the experiment that is embedded in ForkliftComp
and is shown in figure 2.

We go now through each of the relevant states:

4.1 Get floor texture

The robot maintains an inner model of itself in a
class that is replicated in almost each component.
Copies of this object are not synchronized but get
updated by remote access to DifferentialRobot and
HeadNT2P components state. Using this object,
Forklift extends the internal model to build a ba-
sic 3D representation of its environment using the
OpenSceneGraph engine. It initially assumes a flat
floor underneath the robot. When in this state, the
floor is filled up with the texture obtained from the
central region in the left camera image. In order to
acomplish this step the robot points down directly to
the closest floor area. This rapid reflex allows us to
use a very simple object detection algorithm based

arget rejected

Recognize or
reject

— — Initialize Get floor
Search for ™__ Faiuwe ‘texture
candidate Standby
start —
rartom — Hove
Ok / Failure B tilt
Check

Move ‘
/ - Down
ﬂunsuan / -—
(real from Jake
\Q‘a‘ floor
] ﬂompum stored
‘ histogram histrogram
I p—
e Target Estimate
position i
‘Approach to gain found orientation
& : Pick up pallet

|
Candidate Failure
found
a favorable point -
of view u ~
@proa(h /
e /
target

[\

Failure

|

Refine pose
estimation

arget accepted

\(

Refine pose \
|

Final
destination

Figure 2: State machine used in the experiment

Matching
condition
achieved

on color differences that is explained for the next
state. Figure 3 shows the initial 3D world repre-
sentation and the real(left) and virtual(right) images
after copying the floor texture.

4.2 Search for a target object candidate

Taking advantage of the realistic texture for the syn-
thetic floor obtained in the previous state, and as-
suming that the real floor texture is homogeneous
in the local space extending in front of the robot,
we derive a very simple object detection algorithm.
Using the rendering capabilities of the OSG engine,
we obtain a video stream from a virtual camera
placed exactly where the real left camera is located
in the robot head. This virtual camera is configured
to have the same intrinsic parameters as the real one.
The algorithm follows these steps: substract vir-
tual and real images in RGB space using euclidean
metric, convert difference image to gray level, dec-
imate twice the gray level image, binarize, search
columns in the binary image from lower to upper
rows searching for a white pixel, flood fill from that
seed to obtain the closed contour and bounding box,
check that the bounding box has the correct size,
check that the bounding box is surrounded by floor
pixels and compute the 3D coordinates of the cen-
ter of the box and establish them as current target
hypothesis. The result of these steps is shown in
Figure 4.

3D coordinates are computed using inverse pro-

world

Virtual Eye

Figure 3: 3D world and virtual and real images of the floor

Left Eye

Figure 4: Target object segmented. No estimated orienta-
tion computed yet

jection from the camera under the assumption that
the object is on the floor. Note that a rather flat
object floating on the floor can meet this condition
leading to a wrong depth measure, but it would be
a very unlikely object. Nevertheless, even this situ-
ation could be easily detected with additional tests
on the position of the object. As a matter of fact,
3D coordinates of salient points in the pallet are be-
ing computed by the RoimantComp component us-
ing the updated epipolar geometry of the head pro-
vided by HeadNT2PComp. On the other side, an
object adjacent to a wall cannot be detected. Again,
weaker hypothesis on the surrounding floor texture
can be accepted at the cost of additional 3D tests to
discard off the floor objects. Floor texture homo-
geneity or shadows are harder restrictions to over-
come and more sophisticated texture modelling al-
gorithms would be needed.

4.3 Approach the candidate object to gain a
favourable point of view

Once a candidate object has been detected, the robot
starts an approaching behaviour that should take it
to a close and favourable viewpoint over the object.
We define here favourable as a combination of the
distance of the object to the robot and the percent-
age of image occupied by the bounding box. To ac-
complish this subtask several concurrent behaviours
must be active. These behaviours are executed by
other components running in the robot computer.
For the cameras, the tracking component fixates the
candidate object triggering correcting saccades on
the dominant camera (left camera by default) when
needed. At the same time, the vergence component
triggers correcting saccades on the slave camera
(right camera by default) in order to maintain proper
alignment with the attended position. To drive the
robot towards the target position, its world coordi-
nates are passed to a third component that computes
and follows planar trajectories. This trajectories are
computed using Bézier curves to match the initial
and a final orientation of the robot. Third degree
Bézier polynomes are very simple curves and easy
to use when an initial and final orientation have to
be specified.

This state is iterated with the previous one to ob-
tain new visual information on the 3D position of
the candidate object.

4.4 Recognize or reject the candidate object and esti-
mate its orientation on the floor

We run here a rapid test to accept or discard the
candidate object and, at the same time, estimate its
orientation on the floor. We do this in two stages.
First, we activate the rather computationally heavy
component, Vdetector, that computes texture de-
scriptors on the region of interest extracted by the
VisionComp component (see graph of components
in Figure 1). By selectively activating this compo-
nent we save computational resources that may be
needed in other stages of the task. Then, we match
this set of descriptors against a collection of tem-
plates using a simple voting scheme[1]. If the clas-
sifier returns a positive answer, the object is rec-
ognized as a pallet and the subtask proceeds. The
second stage consists on computing the main ori-
entation of the object. To achieve this we calculate
the histogram of gradients of the bounding box sur-
rounding the candidate object. The main mode of
the histogram gives us the orientation of the pallet
on the floor. This completes the estimation of the
initial pose of the pallet and triggers the beginning
of the next state.

4.5 Refine object pose estimation

On entering this state, the robot believes that he is
taking a close look at a pallet of which he approxi-
mately knows its pose. The next step is a new val-
idation test on the "palletness" of the object placed
right ahead and, in case it succeeds, a finer estima-
tion of its pose. We start with a previously stored
3D model of the pallet, a wire frame drawing of
real dimensions. Using the OSG graphics engine
that runs inside the ForkliftComp component and
the already mentioned InnerModel object (contin-
uously updated representation of the state of the
robot), it is easy to render the virtual pallet placed
at the estimated pose and through a dominant vir-
tual camera situated in its corresponding place in
the virtual robot. This virtual image is subtracted
from the real image using a RGB euclidean metric.
These result is converted to grayscale and binarized
using an adaptive threshold. Finally, all white pix-
els are counted to obtain a score. This value must
be greater than a predefined threshold in order to ac-
cept the object as a real pallet. If this test succeeds
the procedure is iterated varying the x, y and alfa co-

ordinates of the pose of the pallet in a small range.
The pose that minimizes the sum of white pixels is
selected as the new estimated pose, if this value is
smaller than the original one. This loop is repeated
several times with increasingly smaller ranges in
pose dimensions, until no further improvement is
obtained or a maximum amount of time is elapsed.
En example of a final estimate pose is shown in Fig-
ure 5

Left Eye Virtual Eye

i

Figure 5: Final estimated pose of the pallet

4.6 Final approach and pick up operation

Once a good estimate of the pose is obtained, this
last state drives the robot towards the pallet along
the appropriated trajectory. At the end, the forklift
should enter smoothly through the pallet openings.
Four infrared sensors placed in the forklift arms and
pointing upwards, two in each one, send a signal to
the component when they are occluded by the pal-
let. This information triggers the lifting behaviour
that is performed by the Fork component.

5 Experimental results

The experiment has been conducted using the
RobEx platform[5]. In the experiment the floor is
assumed to have a rather homogeneous texture and
different color from the surrounding walls. Figure 6
shows a sequence of six pictures in which the robot
detects, approaches, recognizes and estimates the
pose, manoeuvres and, finally, picks the pallet. An
accompanying video shows a run of the experiment
in which the relative orientation of the pallet with
respect to the robot is quite significant. This situa-
tion forces a final manoeuvre to gain a correct final
position.

6 Conclusions and further work

In this paper we have described an experiment de-
signed to study the problem of sequential integra-
tion of behaviours in a real manipulation task con-
ducted by a mobile robot. One difficult aspect has
an architectural nature and deals with the hierarchi-
cal and distributed structure of the resulting soft-
ware system. In order to build complex behaviours
for the robots, we need to handle complex soft-
ware systems using state of the art software engi-
neering technologies. These new tools must pro-
vide us with the necessary means to ensemble many
different concurrent processes, each one contribut-
ing to a piece of the overall robot behaviour. We
have shown how one of these tools, RoboComp can
be further extended to include hierarchical and con-
current state machines providing a necessary level
of sequential control. With this enhancement, we
have instantiated a generic manipulation for a mo-
bile robot using a forklift.

Acknowledgments

This work has been supported by grant PRIO9A037
and GRU09064, from the Ministry of Econ-
omy, Trade and Innovation of the Extremaduran
Government, by grant TSI-020301-2009-27, for
the ACROSS project, funded by the Ministerio
de Industria, Turismo y Comercio (AVANZA?2)
and the European FEDER program and by grant
PDT9A044 for the project Escdner mdvil roboti-
zado funded by the Consejeria of Economia, Com-
ercio e Innovacién de la Junta de Extremadura.

References

[1] Bachiller P. Percepcion dindmica del entorno
en un robot movil. Tesis doctoral. 2008.

[2] Brooks A, Kaupp T, Makarenko A, Williams
S, Oreback A. Orca: A Component Model and
Repository. Software Engineering for Experi-
mental Robotics, Springer, pp. 231-251, 2007.

[3] Harel D. Statecharts in the Making: A Personal
Account Communications of the ACM Vol 52
N° 3, March 2009

Figure 6: "RobEx picking a pallet"

(4]

(5]

(6]

(7]

Manso L, Bustos P, Bachiller P, Cintas R,
Calderita L, Ndfiez P. RoboComp, not another
robotics middelware Submitted to IROS 2010,
Taiwan

Manso L, Bustos P, Bachiller P. Multi-cue Vi-
sual Obstacle Detection for Mobile Robots.
Journal of Physical Agents. 2010;4(1):3-10.

Qt State Machine Framework
http://doc.trolltech.com/solutions/4/qtstatemachine/

Quigley M, Gerkey B, Conley K, Faust J, Foote
T, Leibs J, Berger E, Wheeler R, Ng A. ROS:
an open-source Robot Operating System. ICRA
Workshop on Open Source Software, 2009.

[8] RoboComp, http://robocomp.sourceforge.net,
2009.

[9] Seelinger M, Yoder J. Automatic Pallet Engag-
ment by a Vision Guided Forklift. Proceedings
of the 2005 IEEE International Conference on
Robotics and Automation. 2005;(April):4068-
4073.

[10] Wasik Z, Saffiotti A. A hierarchical behavior-
based approach to manipulation tasks. In Pro-
ceedings of the IEEE International confer-
ence on robotics and automation.Vol 2. Pag:
2780-2785. 2003

